Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Azar, Yossi; Panigrahi, Debmalya (Ed.)We provide the first analysis of (deferred acceptance) clock auctions in the learning-augmented framework. These auctions satisfy a unique list of very appealing properties, including obvious strategyproofness, transparency, and unconditional winner privacy, making them particularly well-suited for real-world applications. However, early work that evaluated their performance from a worst-case analysis perspective concluded that no deterministic clock auction with n bidders can achieve a O (log1-∈ n ) approximation of the optimal social welfare for a constant ∈ > 0, even in very simple settings. This overly pessimistic impossibility result heavily depends on the assumption that the designer has no information regarding the bidders’ values. Leveraging the learning-augmented framework, we instead consider a designer equipped with some (machine-learned) advice regarding the optimal solution; this advice can provide useful guidance if accurate, but it may be unreliable. Our main results are learning-augmented clock auctions that use this advice to achieve much stronger performance guarantees whenever the advice is accurate (known as consistency), while maintaining worst-case guarantees even if this advice is arbitrarily inaccurate (known as robustness ). Our first clock auction achieves the best of both worlds: (1 + ∈ )-consistency for any desired constant ∈ > 0 and O (log n ) robustness; we also extend this auction to achieve error tolerance. We then consider a much stronger notion of consistency, which we refer to as consistency∞ and provide an auction that achieves a near-optimal trade-off between consistency∞ and robustness. Finally, using our impossibility results regarding this trade-off, we prove lower bounds on the “cost of smoothness,” i.e., on the robustness that is achievable if we also require that the performance of the auction degrades smoothly as a function of the prediction error.more » « lessFree, publicly-accessible full text available January 28, 2026
-
Azar, Yossi (Ed.)A data-oblivious algorithm is an algorithm whose memory access pattern is independent of the input values. We initiate the study of parallel data oblivious algorithms on realistic multicores, best captured by the binary fork-join model of computation. We present a data-oblivious CREW binary fork-join sorting algorithm with optimal total work and optimal (cache-oblivious) cache complexity, and in O(łog n łog łog n) span (i.e., parallel time); these bounds match the best-known bounds for binary fork-join cache-efficient insecure algorithms. Using our sorting algorithm as a core primitive, we show how to data-obliviously simulate general PRAM algorithms in the binary fork-join model with non-trivial efficiency, and we present data-oblivious algorithms for several applications including list ranking, Euler tour, tree contraction, connected components, and minimum spanning forest. All of our data oblivious algorithms have bounds that either match or improve over the best known bounds for insecure algorithms. Complementing these asymptotically efficient results, we present a practical variant of our sorting algorithm that is self-contained and potentially implementable. It has optimal caching cost, and it is only a łog łog n factor off from optimal work and about a łog n factor off in terms of span. We also present an EREW variant with optimal work and caching cost, and with the same asymptotic span.more » « less
An official website of the United States government
